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ABSTRACf

huge  amplitude oscillations of drops and bubbles immersed in an immiscible liquid host

have been investigated using ultrasonic radiation pressure techniques. Single levitated or

trapped drops and bubbles with effective diameter between 0.4 and 0.8 cm have been

driven into resonant shape oscillations of the first few orders. The direct coupling of driven

drop shape oscillations between the axisymmetric  1=6 and /=3 modes has been documented

as well as the interaction betw=n axisymmetric  and non-axisymmetnc modes. Effective

resonant coupling from higher to lower order modes has been observed together with a

much less efficient energy tmnsfer in the reverse direction. The first three resonant modes

for bubbles trapped in water have also been excited, and mode coupling during driven and

free-deaiying oscillations has been measured. The evidence gathered thus far indicates that

efficient drop resonant coupling from a higher to a lower order mode occurs when the

chamcteristic frequency of the latter mode roughly coincides with a harmonic resonance.
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1. INTRODUCTION

Single drop and bubble dynamics arc associated with multi-component and mult.i-

phase dispersions occurring in nature and in industrial processes involving liquid-liquid

extraction, distillation, or direct contact heat transfer. An improved understanding of the

details of the often nonlinear interfaced dynamics should lead to a more accurate modeling

of the relevant large-scale processes. In addition, a fundamental understanding of the

dynamics will favorably impact the development of methods for the accurate determination

of the physico-chemical  properties controlling the motion of the drops and bubbles.

The levitation or trapping of single isolated fluid particles allows the control of their

position, of their mechanical stimuli, and the accurate measurement of their response. By

controlling the time variations of electric or acoustic force fields, contactless  static and time-

varying shape distortions can be induced and analyzed both in the transient as well as

steady-state regimes. Practical interest in the deformation and shape oscillations of drops

and bubbles immersexl in liquid hosts arises because of their impact on particle size

distribution in Iarge-scale fluid dispersion systems through fission and coalescence (Blass,

1990, Wright and Ramkrishna, 1994). The effects of shape deformation and oscillations on

the efficiency of mass and heat tmnsport have also been investigated in the past using
translating fluid particles in a liquid or gaseous host (Kawalski  and Ziol Icowski,  1981, Kaji

et al., 1980, Scott et al., 1990). The observed increase in the tmnsport  rates of oscillating

drops cannot be attributed to the increase in surface area alone. Rather, the details of the

dynamics of the shape oscillations and their impact on the fluid circulation around and

inside the drops or bubbles are believed  to play the pn mary role in this enhancement.

Because of inter-particle collision and flow perturbations, the shape deformations

of individual droplets and bubbles in dispersions are often large, and the resulting shape

osci IIations are conscqucntl  y nonl incar. Theories based on smal I amplitude approximations

(Rayleigh  1879, Lamb 1881, Miller and Scrivcn 1968, Prospcrctti 1980, Marston 1980)

cannot accurately describe the details of the dynamics in this amplitude range. The

fundamental chamcteristics  of nonlinear in viscid drop shape oscillations have been

addressed by Tsamopoulos and Brown ( 1984) through mu] tiplc time-scale expansion and

by Natarajan and Brown ( 1986) who derived the equations describing the nonlinear

interaction of resonant modes by using the variational principle [or the bgrangian  of the

oscillatory motion. The quadratic and third order couplings of a-wsymmettic  resonant

modes of charged drops lrccly suspended in a tenuous medium (vacuum or gas) were
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cortsidcrcd  in the former study, and uncharged drops were treated by the latter authors. The

principal predictions obtained were the quadritic decrease of the drop and bubble rcscmmt

mode frequencies as a function of the oscillation ~pli(ude,  and the resonant coupling of

modes whose frequencies are integer multiples. Such modal interactions have been

characterized by either a~nodic  or periodic modulations of the amplitude and phase of the

interacting modes. Experimental corroboration has been obtained for the amplitude

dependence of the fundamental mode resonance frequency for drops suspended in liquid

and in air, but no evidenee  for soft nonlinearity in the resonance frequency has yet been

provided for the case of bubbles in liquids. Similarly, no experimental evidence for

nonlinear modal coupling has yet been presented for drops and bubbles immersed in a

liquid. In this paper, we will address some of these particular issues by presenting

experimental observations of modal coupling of the resonant modes of both drops and

bubbles immersed in a liquid host and driven into shape oscillation by the modulation of the

ttltrmonic  radiation pressure.

2. EXPERIMENTAL APPROACH

In this work, we use a primary ultrasonic startding wave to support a drop or trap a
bubble against gravity, and we maiulate  this wave at a vastty lower frequency to drive the

drop into shape oscillations. A technique cleveloped for previous experimental studies of

linear and nonlinear drop (Marston and Apfel; 1979, Tnnh,  Zwern, and Wang; Trinh and

Wang, 1982) and bubble shape oscillations (Asaki,  Marston, and Tnnh,  1993) has thus

been used to gather the data reported in this paper. This particular implementation of the

acoustic levitation method has thus been prcviousl  y described in detail, artd ortl y a cursory

discussion will be presental here. As shown in figure 1 a liquid-filled cell with square

cross section is excited into resonance through direct coupling to the piez~electric

transducer attached at its bottom. A specific three-dimensional u] trasonic  standing wave in

the liquid column is excited near the fundamental longitudinal (length) male of the

transducer (around 22.5 KHz) or at one of its odd harmonics (around 66 kHz). The

empirieal  frequent y matching of these two resonances is carried out by varying the height

of the liquid column, and a typical desirable resonant mode provides isolated three-

dimensional acoustic pressure nodes and antinodes  near the cell axis of symmetry. Liquid

drops which are more compressible than the host liquid are driven toward and levitated near

pressure antinodes  (Apfel,  1976), and gas bubbles which arc smaller (larger) than resonant

size arc driven toward and trapped near pressure antinodcs  (nodes) (Ellcr, 1968). The
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bubble resonant size is that at which the volumetric bubble resonance frequency is equal

[hat of the standing wave. This volumetric mode frequency OR (the Minnacrt frequency )

approximately given by

to

is

( l ) ,

where y is the ratio of the specific heats of the gas, P. is the ambient hydrostatic pressure,

u the surface tension, p is the liquid density and R the equilibrium bubble radius. For the

bubble sizes of interest in this study, the second term on the right side is small compared to

the first term.

In this paper we report results obtained with both drops and bubbles, the latter always

larger than critical size, and trapped slightly above a local pressure node. An experimenkd

study of the large amplitude oscillations of drops levitated in air and under the combined

action of electric and ultrasonic fields has been reported elsewhere (Trinh, HoIt, Thiessen,

1996).

Modulation of the acoustic radiation stresses acting on the interface has provided the
drive for the shape oscillations. This was primarily carried out through direct modulation of

the fundamental levitation standing wave, but the amplitude modulation of the third

harmonic has also been implemented in order to provide a greater stress on the individual

fluid particles. For the amplitude modulaticm of the radiation pressure, the voltage across
the ultrasonic transducer, VW , is given by

v ~c - Vaco [1+ Mcos((omf)]cos( a&?), (3

va~ is the amplitude of the carrier voltage at the frequency ~ac = 2m fw for the acoustic

standing wave (fz=22.5  kHz), M is the modulation index for the amplitude modulation of

the acoustic force at the frequency Wm. Because the acoustic radiation force is proportional
to the square of the acoustic pressure, this force is thcrcforc proportional to w-w , and ttis

amplitude modulation results in a time-varying acoustic force at both the frequencies ~ as

well as ?~. This results in a periodic flottcning of the drop or bubble by the acoustic force

when the fluid particle diameter is small cornparcd with the ultrasonic wavc]ength.  When

the particle diameter is a significant fraction of the ultrasonic tvavelcngth,  however, the

periodic elongation of the drop or bubble along the vcrticxd axis can also be obtained
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through amplitude modulation of the acoustic pressure. A static distortion of the drop or

bubble can also be induced by the ultrasonic levitation or tmpping  ficki as the size of the

!Iuid part.iclc  becomes a non-negligible fraction of the wavelength. Figure 2a shows the

unmodulated shape of a large air bubble of approximately 0.8 cm in diameter and trapped in

a 22.9 kHz sound field. In addition to the shape asymmetry with respect to the equator, one

can also notice the presence of short-wavelength capillary waves on the upper hemisphere

of the trappcxl bubble. Figure 2 b is a magnified image obtained under short duration

stroboscopic illumination and shows the capillary waves in greater detail. The frequency of

these waves have been determined to be around 11 kHz, indicating that tic generating

mechanism is probably through the Faraday instability (Holt and Trinh, 1994). The latter

has aIso been shown to induce resonant shape oscillations for smaller bubbles (20 to 30 ~m

in diameter) which are initially acoustically driven in the radial mode (Holt and Gaitan,

1996). The presence of these capillary waves and the fact that the equilibrium shape of the

trapped bubbles is not spherical both influence the characteristics of the shape oscillations.

The details of such effects are beyond the scope of this paper, however, but they will be

addressed in a forthcoming low-gravity investigation to be carried cmt using a similar

experimental apparatus.

An acoustically-induced steady-state conv@.ive  flow field is also present in the
liquid outside of the trapped bubble as shown in figure 3. This time-expasure  photograph

of both a t.rappcxl  bubble and its immediate surrounding shows steady and oscillatory

circulation both inside and outside of the bubble (in the air and in the liquid). The outer

streaming in the liquid has been documented previously and is expected, but the inner flow

has not been seen before and is under more detailed scrutiny. The results  will be repmted  in

a later publication.

The driven and freely-decaying shape oscillations of both drops and bubbles were

monitored by standard (30 frames/second) and high-speed (2,000 fmmes/second)  video

cameras. To facilitate the automated analysis of the drop or bubble shapes from the

digitized individual video frames, backlighting was selected as the primary illumination

technique. The high-contrast, dark contours in a bright background were analyzed with an

edge-finding routine, and the experimental data were fitted into axisymmetric  shapes with

the usual expansion in terms of the time-dependent surface spherical harmonics.

The shape of the drop or bubble, described by R(tl ,t) is cxpandcci  as
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1
R(e, f) -  ~ 1  +; [CI(l)PI(COSO)] ,

J
(3)

[m?

where fi is the radius of the sphere of the same volume, Pf(cos 0) is the Legendrc

polynomial of degree f, and Cf(t) are the corresponding coefficients. Using this method we

can obtain the time series for each cl(t) for driven and freely decaying shape oscillations.

For the data described in this paper, wc have limited ourselves to 1*=6. A digitally

analyzed video frame up to a maximum of 320 x 240 pixels and in 2S6 levels of gray.

Figure 4 shows a series of shapes recorded on still video for a drop initially driven into

the axisymmetric 1=3 mode and subsequently exciting the non-axisymmetric 1=2 mode.

This case is discussed in a later section of this paper. Figure 5 shows the photographs of

the extremum shapes of a drop initially driven into the 1=6 mode and subsequently exciting

the 1=3 rode. This case is also discussed in the following section. The illumination used

for the drop photographs is a combination of back and side lighting.

3. EXPERIMENTAL RESULTS

Drop Shape Oscillations

The first few dn”ven resonant shape oscillations of drops immersed in a liquid host

have been previously observed by using ultrasonic mdiation  pressure (Marston and Apfel,

1979; Trinh, Zwem,  and Wang, 1982; Annamalai  and Trinh, 198S) and electric field drive

(Rhim, Elleman,  and Saffren, 1982; Scott, Basaran, and Byers,  1990; Azumaj Yoshihara,

and Ohnishi, 1989). Although the controlled excitation and measurement of the well

resolved and independent resonant modes and the experimental evaluation of the weak

nonlinear characteristics of the fundamental quadrupolc  (oblate-prolate)  mode has allowed

the validation of both the linear theory as well as predictions from nonlinear numerical

calculations (Tsamopoulos and Brown, 1984), no data on resonant mode coupling has yet

been published. In this paper wc report the observations of the interaction between

resonant modes when their nominal resonant frequencies satisfy an approximate integer

multiple relationship. The strongest coupling has been found for a 2:1 ritio where a mode

is initially acoustically driven at high amplitude, and a lower order mmic is subsequently

and excited at a sub-harmonic frequency duc to nonlinear intcmction.
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The materials used for these studies are silicone oil (Polydimcthylsiloxancs)  with a

kinematic viscosity of 2 cSt for the drops and distilled outgasscd  water for the host liquid.

The drop diarnctcr  ranged from 1.0 to 1.5 cm, and the ultrasonic frcqucncics  of the

standing waves used to excite the shape oscillations were 22.5 and 66 kHz.

COUPLING BETWEEN THE L=3 AND L=2 MODES

Figure 6 summarizes the experimental results for a 1.1 cm diameter silicone oil

drop in water. The drop videotape frames capturing the drop motion were digitized and the

drop contour on each frame was continuously fitted with 100 points. Assuming axial

symmetry, this drop boundary was decomposed into shapes associated with Legendre

polynomials. These coefficients (between C2 and w ) are plotted in figure 6a. The volume

is calculated assum”ng a“ul symmefry,  and is also plotted in order to check the constant

volume restriction.

In this particular measurement, the drop was initially driven in the 1=3 axisymmetric

mode resonance (at 2.15 Hz) at Iargc amplitude (20% of the drop diameter). The steady-

statc oscillations are characteristically tit-cc-lobed and they can be viewed along a

horizontal view axis (see figure 4), while an oscillating circular cross section can be seen

along the orthogonal vertical axis (symmetry axis). This is conkned  by the plot of the

volume which shows a constant value centered at 1.0. At about 150 frames, the amplitude

of the 1=2 mode Legcndre  coefficient (w) begins to increase, and displays a sub-harmonic

time-dependence at 1.07 Hz. These 1=2 mode oscillations grow in amplitude at the expense

of the 1=3 oscillations, but they are not axisymmetric  along the vertical axis. Rather, they

are aligned along a horizontal direction normal to the symmetry axis. This is reflected by

the deviation of the calculated volume from unity. The acoustic shape oscillation drive is

removed after 360 frarncs, and the decay of all the shape oscillation modes can be

observed.

One might note that according to linear theory results (Marston,  1980), the ratio of
the small amplitude resonance frequencies u% / m- is near 1.S2 for the current conditions

and for axisymmetric  modes. The lower frequency value (factor of 2) corresponding to the

sttb-harmotic  frequency drive observed here, could be explained by soft nonlinearity in

Iargc amplitude drop shape oscillations (Trinh, Wang, 1982), dctuning  duc to viscous

cffcc~s,  or it might cw-respond to a Iowcr rcsonancc  frequency for the non-~xisymmctric

mode which has been cscitcd  in this particular case. Wc have observed the rcmova] of the
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dcgcncricy  for [hcsc resonant oscillations (three different 1=2 modes can be driven at

slightly di~fcrcnt frcqucncics  grouped around the theoretically prcdictccl  rcsonaricc).  An

anal ysis of the removal of the dcgcncracy  by a static shape deformation is also avai Iable in

the literature (Suryanamyana  and Bayazitoglu,  i991).  In previously reported experimental

results on drops levitated in air (Trinh,  HoIt, and Thiessen,  19%), three separate 1=2

modes were also observed, and a non-axisymmetric  mode was found to have the lowest

frequency. If the same is true for this case, the frequency ratio of the axisymmetnc  1=3

mode to the non-axisymmetric  1=2 mode would be closer to 2.

In figure 6 b are plots  of Fourier transforms of the time-dependent Legendre

coefficients, and show the frequency spectrum for each of the Legendre  shape. The Fourier

transforms were calculated using all the data shown in the time dependence plots. The first

obvious characteristic is the presence of the initial driven frequency 2.15 Hz of the 1=3

mode on alf of the spectra for the corresponding Legendre  coefficients. This indicates tit

large amplitude oscillations in an initially pure mode will drive motion which has other

characteristic higher order mode shapes all having the same initial driven frequency. This

was predicted by Feng and Beard (1990,1991) when they considered the CXMC  of

electrically driven oscillations of charged drops in a gas. Interestingly, the sub-harmonic

frequency strongly appears only in the 1=2 and somewhat weakly in the 1=5 mcde spectra.

Another salient characteristic is the excitation of a near second harmonic component at 4.2

Hz corresponding to the 1=5 mode oscillations. The 1=5 mode linear resonance frequency is

roughly twice that of the 1=3 mode.

Also significant is the fact that we have not been able to get a strong coupling in the

reverse direction, i.e. it has not been possible to drive the 1=3 mode at its characterish”c

resonance frequency by acoustically exciting the axisymmetric  or nonaxisymmetric  1=2

~ motion generates 1=3,4,5,6 shapes at its drivenoscillations. Large amplitude driven l=-

frcqucncy  as well as its harmonics. For example, the 1=3 oscillatory shapes have the

frequency of the driven 1=2 mode, and [=4 oscillations arc found to have frequency

components at f(l=2) and at 2xf(l=2)  instead of 3xf(l=2)  as prescribed by linear theory.

This appears to agree with previously published results based on a nonlinear analysis of the

decay of drops released from a nozzle (Becker, Hiller, and Kowalewski, 1994).

These results can be summarized as follofvs:  (l) Large-arnplitudc acoustically

driven resonant oscillations in a pure mode can sub-hmmonicallv cxcitc a corresponding

resonant mode having different symmetry charwtcristics,  (2) They gcncmtc  the first fcw of
8



the Legcndre  a~isymmctnc  shapes at the same driving frequency, m-d (3) They can also

drive higher harnwnic resonant mode osci nations (second harmonic in this CLSC) m

prcclictcd  by Tsamopoulos and Brown ( 1984).

COUPLING BETWEEN THE L=6 AND L=3 MODES

In this second case, a 1.5 cm diameter silicone oil drop was levitated in distilled

water and driven into resonant 1=6 mode oscillations (see figure 5), Figure 7a shows

the initial driven motion of the cG Legendre  coefficient at 6.7 Hz, the rising amplitude of the

C3 coefficient, and the steady driven 1=3 oscillations at the sub-harmonic frequency of 3.4

Hz. A slight non-axisymmetric  component at the same sub-harmonic frequency  is detected

in the plot of the calculated volume as a function of time. Also observable is the rising

importance of the sub-harmonic frequency in the time dependence of both the c~ and C4

coefficients. Figure 7 b, showing the plots of the Fourier transform of the Legendre

coefficients, confirms the presence of the driving and sub-harmonic frequency. The second

harmonic frequency component is not apparent in this case because the resonant mode

response at such a high frequency (13.4 Hz) is highly damped by viscosity.

Onc must note, however, that the calculated small-amplitude normat mode

frequency ratio ~ / w is approximately equal to 2.5, not 2.0. In this case the sub-

harmonic fmptency  appears higher than the small-amplitude resonance frequency of the

saondary  (non-lined y driven) mode. Thus, there appears to be a significant degree of

detuning  in the sub-harmotic  drive of the 1=3 characteristic mode. This is not surprising

due to the increased viscous damping associated with the higher order mode. In addition,

because of the soft nonlinearity of large amplitude shape oscillations, the actuat resonance

frequency of the 1=6 mode is shifted to a Iowcr vatue than predicted by the linear theory.

The actual frequency ratio could therefore be smaller than 2.5 by as much as 15% when

previous experimental results and theoretical predictions are taken into account

(Tsamopoulos and Brown, 1983; Tnnh and Wang, 1982).

COUPLING BETWEEN THE L=4 AND THE L=2 MODES

In this third case, a 1.2 cm diameter silicone oil drop in distdlcd water was initially

driven into resonant Id fi~isymmctric  oscillations (SCC the C4 cocfflcicnt  plotted as a
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tunction  of time in figure 8). The fairly large amplitude driven oscillations in the 1=4

mode appear to excite even numbered oscillations (1=2 and 1=6) at the same frequency, but

they do not appreciably induce odd-numbered mode motion ([=3 and 1=5). This is in

agreement with predicted behavior (Tsamopoulos and Brown, 1984, Feng and Beard,

1990). The time-dependence of the 1=2 mode motion is a superposition of two frequencies:

the natural, lower, resonance frequency of the quadruple oscillations and the driving

frequency of the 14 mode. Also note that the 1=2 mode oscillations are about a

substantially oblate  equilibrium configuration (the value of the C2 coefficient is negative

throughout the shape oscillations).

According to linear theory for spherical drops, the ratio of the 1=4 to 1=2 mode

frequencies is about 2.6. The actual frequency ratio for large amplitude oscillations will be

lower for the same reasons mentioned in the preceding case. In addition, the equilibrium

shape of the drop under study is not spherical and its resonance frequencies would also be

shifted to values lower than predicted by linear theory (Trinh,  HoIt, and Thiessen, 1996;

Shi and Apfel, 1995). Thus, harmonic resonance still appears to be a reasonable

interpretation.

Bubble Shape Oscillations

Shape oscillations have been experimentally observed in the past in the context of

the shape stability of radian y oscillating small bubbles: as the amplitude of the volume

oscillations of bubbles trapped in an ultrasonic standing wave increases, resonant surface

standing waves (shape oscillations) are Pa.mmetricdly  excited through the Faraday

instability mechanism (Strasbcrg and Benjamin, 1958; Ellcr and Crum, 1970). Other

workers have also driven these shape modes directly by mechanically re.$training  bubbles in

a wire loop and exciting an acoustic traveling wave in the kiloHcmz. frequency range

(Franccseutto and Nabergoj,  1978). Recent advances in the tcchniquc  for ultrasonically

trapping Iargcr, millimeter-size bubbles have permitted the detailed analysis of certain

aspects of the damping of their shape oscillatory dynamics (Asaki, Marston,  Tnnh,  1993,

Asaki, Thiesscn, and Marston,  1995). In this particular paper, }VC report some quantitative

measurements of the charwtcristics of large amplitucic  shape osci nations of air bubbles

several millimeters in diameter and ttappwi  in distilled water.
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SHAPE OSCILLATIONS OF A[R BUBBLES ACOUSTICALLY TRAPPED IN WATER

Air bubbles trapped by the 22.5 kHz, standing wave were initially driven in one of

the resonant shape modes and the subsequent freely decaying oscillations were anal yzed

using modal decomposition in the same manner as described in previous sections for the

case of drops. The initial oscillation amplitude was generally on the order of, or larger than

10% of the equivalent equilibrium bubble radius. Our attention was mainly focused on the

excitation of neighboring resonant modes. The experimental time resolution for all the data

sets presented below was 1 millisecond.

Figure 9 shows plots of the first flvc Legendre  coefficients and of the volume as a

function of time for a 0.42 cm diameter air bubble initially driven into the axisymmetric  1=2

resonant mode (49.5 Hz). The most notable higher mode excitation at the appropriate

chura.cteristic  resonance frequency is revealed by the response of the 1=3 mode. Dual

frequency response is detected during both the driven and free-decay phases: both the

driving frequency as weIl as roughly double that frequency are clearl y visible in the C3 time

response curve. The evidence also shows that the 1=4, and to a much smaller extent the 1=5

and 1=6 shapes, were also driven at the same /=2 frequency during the acoustically-driven

phase.

Figure 10a displays plots of the Legendrc  coefficients as a function of time for a

0.41 cm diameter air bubble initially driven into the axisymmetric  1=3 mode (83 Hz). As

shown before, all the resonant shapes are excited at the single driving frequency in the

steady-state regime. A chamcteristic nearly single frequency decay is measured for the 1=2

mode as soon as the acoustic drive is terminated, while both the 1=3 and 1=4 modes display

a superposition of the 1=2 and of their characteristic normal mode free-decay frequencies.

This is better shown in Figure 10b where the Fourier transform of the time-series data in

the free-decay region was performed. The lowest order (1=2) and the next higher (14)

modes frequencies are not harmonically related to the excitation frequency, the experimental

results for the mode frequency ratios arc f(l=3) / f(2) = 1.71 and f(l=4) / f(l=2) = 2.43.

These values are lower than the linear theoretical values for ideal  spherical drops of 1.82

and 2.56 respectively.

Figure 11 reports similar results cxccpt that the initial  acoustic drive \vas for the

Id mode ( 136.5 Hz). Once again, the 1=2 natural free-decay frequency is present in all the

Legcndrc coefficient time series, and each chamclctistic  mode Ircqucncy  is gcner~tcd in the
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free-decay phase. The Irecly decaying oscillations of the higher modes arc thus modulated

by lhc least damped  natural oscillations in the fumkuncntal  qumirupolc  mode.

4. DISCUSSION and SUMMARY

Driven large amplitude shape oscillations responses of drops and freely

oscillations of bubbles have been investigated in this work. Ample evidence

harmonically and harmonically-induced mode coupling has been documented

decaying

for sub-

for both

drops and bubbles. This is at least in partial agreement with the theoretical predictions of

Tsamopoulos and Brown ( 1984).

For drops, the more significant result described here is the uncovering of an

efficient sub-harmonic excitation of a resonant mode concurrent with the usual higher

harmonic excitation. The former is more efficient due to the increasingly greater viscous

damping of shape oscillations with higher mode numbers. A certain degree of detuning  has

also been found to be acceptable for subharmonic excitation: exact matching of the natural

resonance frequency of this secondary mode to half the drive frequency is not required.

Also significant is the fact that a mode of different symmetry characteristics can be excited

as long as its resonance frequency is close to half the drive frequency. Finally, all shape

oscillation modes are driven at the excitation frequency, and it appears that even-numtxmxl

modes do not easily couple to odd-numbered ones, while odd-numbered modes can excite

even modes. This is in agreement with previous theoretical work describing the dynamics

of electrostatidl  y levitated charged drops (Tsamopoulos  and Brown, 1984; Feng and

Beard, 1990and  1991).

In the case of bubbles, it is clear that the free-decay dynamics are dominated by the

least damped mode, regardless of the nature of original driven mode. As in the case for

drops, all the modes are driven at the excitation frequency, but the bubbles higher order

modes are found to freely decay at their characteristic resonant frequency superposed on the

fundamental mode frequency. The deformed, semi-oblate shape of these trapped bubbles is

not symmetrical with respect to the equator. This non-spherical cqui Ii brium shape could

explain why the experimental mtios for the resonant mode frequencies are lower than the

predictions from linear theory.

Bccausc of the need for levitation (or tmpping)  the fluid particles arc not totally free.

This is reflected in the oblatc equilibrium shapes d’ the relatively Iargc air bubbles studied
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here and in the outer liquid streaming flows. The drops and bubbles are thus not completely

(“rcc of cxtcmal influence since they arc constrained [o remain at a fi xcd location by the

sound field. It has been theorized that the equilibrium shape of the drop or bubble also

plays a significant role in the mode coupling processes involved at Iargc amplitude

oscillations. This may be intuitive y understood once the shifting of the resonance

frequencies by static shape deformation and removal of mode degeneracy is taken into

account. The performance of the same experiments in low gravity where all positioning

forces are turned off during tic free-decay phase would provide results devoid of field

interference, and it might provide a direct quantitative assessment of this bias.

Previous theoretical works dealing with weakly viscous drops have suggested a

significant influence of viscosity on nonlinar  mode coupling characteristics (Basaran,

1992; Becker, Hiller, and Kowalewski, 1993). The results reported here point to an

obvious bias toward the secondary excitation of less damped and harmonically-related

resonant modes during the active excitation of a primary mode at large amplitude. The

apparent significant degree of detuning  observed here also suggests the influence of

viscous effects, although this may also emphasizfi  the effect of the soft nonlinearity in the

resonance frequencies.
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FIGURE CAPTIONS

Figure 1:

Schematic description of the experimental apparatus. A Lucite square cross-section cavity
has been machined to allow the mounting of a resonant piezoelectric  transducer at the
bottom of the chamber. This tmnsducer  is driven by a function generator and amplifier in
order to establish a three-dimensional standing wave in the water filled chamber. This
standing wave is amplitude modulated in order to modulate the acoustic radiation pressure
to drive the levitated drops and trapped bubbles into shape oscillations. The data described
in this paper has been acquired through the analysis of digitized frames from a high speed
video camera recording the dynamics of the backlight fluid particles.

Figure 2:

~ Backlit image of a trapped 4,5 mm diameter air bubble in water. The structure faintly
seen at the north pole are high frequency capillary waves excited through the Faraday
instability on the air-water interface.

b: Higher resolution video frame of the capillary waves at the bubble north pole. The waves
have been recmded with a video camem with high intensity-short duration pulsed lighting.

Figure 3:

Single video  frames displaying the light scattered from a trapped air bubble cxmtaining
suspended tracer particles. A steady-state streaming flow can be observed within the air
bubble. The velocity distribution is highly non-uniform because the pnncipd  driving
mechanism for strtxuning  appears to be the capillary waves at the bubble top surface.

Figure 4:

Series of video single frames of a silicone oil drop in water initially driven into the
axisymmetric  1=3 mode. Non-axisymmetric  1=2 oscillations are gradually excitd through
harmonic resonance. The initial axisymmetric  three-lobed oscillations are coupled with
oblate-prolate  shapes as shown on this view perpendicular to the original axis of symmetry.
The series of five pictures on the left depicts axisymmetric  1=3 mode shaps. The series of
ten pictures on the right shows shapes of superposed 1=3 and 1=2 oscillations.

Figure 5:

Series of video single frames showing the shapes of an initially axisymmetric  1=6 (on the
left) and the shapes of the superposed 1=6 and 1=3 shape modes (on the right). The 1=3
secondary oscillations arc excited by the large amplitude acoustically-driven 1=6 mode.
Characteristic three-lobed configurations arc seen superposed on the original six-lobed
geometry.

Figure 6:

a.: Time dependence of the first five Legendre  coefficients of a 1.1 cm diameter silicone oil
drop levitated in water and initially driven into the ~xisymmctric  L=3 resonant mode of
shape oscillations. The sub-harmonic cxclkltion of a ncm-axisymmetric  L-2 resonant mode
is the salient characteristic. A strong harmonic component can also be detected in the C4,
C5, and C6 Legcndrc  coefficient.
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b: Fourier spectrum of the times series shown in a. Both sub-harmonic and harmonic
components arc prominently displayed. All the data points shown in the time series have
been used in the Fourier transform operation.

Figure 7:

a Time dependence of the first five Legendre  coefficients for a 1.5 cm diameter silicone oil
drop Icvitatcd in water and initially driven into the b6 resonant mode of shape oscillations.
The sub-harmonic coupling leads to the excitation of the resonant L=3 mode accompanied
by a very slight decrease in the amplitude of the response in the L=6 mode.

b: Fourier transforms of the data in a. prominently display that sub-resonant coupling. All
the data points shown in the time series have been used in the Fourier transform operation.

Figure 8:

Time dependence of the Legendre  mefficients for a 1.2 cm diameter silicone oil drop
levitated in water and initially driven into the M resonant mode of shape oscillations.
Sub-resonant excitation drives the L=2 mode which responds at a combination of the
driving and sub-harmonic frequencies.

Figure 9:

Time dependence of the Legendre  coefficients for a 0.42 em diameter air bubble trapped in
water. The bubble is initially driven into the L–2 mode and the oscillations are allowed to
freely decay. Harmonics of the driving frequency an be detected, but an obvious
characteristic is the presence of the driving frequency in the response of all the Legendre
modes.

Figure 10:

Titne dependence of the Legendre  coefficients and ITT for a 0.41 cm diameter air bubble
trapped in water and initially driven into its Li3 resonant mode. All the modes respond at
the forcing frequency during the driven phase, but the characteristic frequencies of the
normal modes are recovered during the free-decay phase, although they are modulated by
the least-damped L–2 mode oscillations.

Figure 11:

Time dcpcndenee  of the Legendre  coefficients for an air bubble driven in its L-=4 resonant
mode. All modal responses arc at the driving frequency in the initial phase, but the
characteristic modal frequencies are again rcccwercd in the free-decay portion.
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